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Computer simulation studies of anisotropic systems 

XVI. The smectic E-smectic B transition 

by G. R. LUCKHURST and P. SIMPSON7 
Department of Chemistry, The University, Southampton SO9 5NH, England 

and C. ZANNONI 
Istituto di Chimica Fisica, Universita di Bologna, 40136 - Bologna, Italy 

(Received 25 September 1986; accepted I9 January 1987) 

We have investigated the smectic E-smectic B transition with the aid of a model 
smectogen whose properties have been calculated using the Monte Carlo technique 
of computer simulation. The lath-like mesogenic molecules are defined to lie in a 
plane with their centres on a triangular lattice and with their long axes orthogonal 
to the smectic layer. The quadrupolar interaction, restricted to nearest neighbours, 
is assumed to be responsible for the herring-bone arrangement of the molecular 
short axes, characteristic of the smectic E phase. The computer simulations have 
been employed to evaluate both thermodynamic and structural parameters as a 
function of temperature. The model smectogen is found to exhibit a continuous 
transition at which the long range herring-bone structure of the smectic E phase 
is destroyed only to be replaced by the analogous short range structure of the 
smectic B. Where possible the results simulated for the model smectogen are 
compared with the behaviour of real mesogens and the predictions of molecular 
field theories for the transition. In particular, contact is made with X-ray diffrac- 
tion studies of the two phases by using optical techniques to generate the diffrac- 
tion patterns associated with configurations produced by the simulation. The 
model is found to be in good accord with experiment but the molecular field 
prediction of the smectic E-smectic B transition temperature is shown to be poor. 

1. Introduction 
I t  is frequently assumed that the molecules which constitute thermotropic liquid 

crystals are cylindrically symmetric about their long axes. In fact the molecules are 
more lath-like than rod-like because of the phenyl rings which are an integral part of 
most mesogenic molecules as, for example, in 4-phenylbenzylidene-4’-amino-n-pentyl 
cinnamate ( I )  

One intriguing consequence of this molecular biaxiality is that the uniaxial nematic 
phase should undergo a transition to a biaxial nematic at  a lower temperature [I]. 
However it has not proved possible to cool a real nematic to sufficiently low tem- 
peratures to reveal the biaxial phase, although it has been observed for a model 
nematogen by a computer simulation experiment [2]. 

t Present address: Royal Signals and Radar Establishment, Great Malvern, Worcestershire 
WR14 3PS, England. 
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/ / 

Figure 1. The classical herring-bone arrangement of the molecular short axes in a smectic E 
phase. The laboratory axes x and y ,  used to describe the molecular orientations, are taken 
to be parallel to the two glide planes of the herring-bone structure. 

The situation is different for smectic phases where the influence of molecular 
biaxiality on the organization within the layers of certain smectic phases has been 
established [3]. For example within the smectic B phase the molecules are arranged on 
the sites of a hexagonal lattice with their long axes essentially orthogonal to the layers. 
There is no long range orientational correlation between the molecular short axes and 
so the phase is uniaxial. In the smectic E phase, however, such long range ordering 
is present and, on average, the short axes form a herring-bone structure (cf. figure I) ;  
in consequence the phase is biaxial. 

The structures of both the smectic B and E phases have been established by careful 
diffraction studies on a range of materials [4-71 which includes (I). In addition such 
investigations [4,6] also reveal that within the smectic E phase the molecules are 
arranged on an orthorhombic lattice which results from a small distortion of the 
hexagonal structure of the smectic B phase. For mesogens possessing both phases the 
smectic E-smectic B transition is found to be weakly first order [8]. We are unaware of 
any experimental determination of the orientational order parameters characterizing 
the fluctuations of the molecular short axes with respect to their preferred orientation 
or director. 

There have been several attempts to develop a theoretical description of the 
smectic E-smectic B transition. These share a common feature in that they consider 
a single smectic layer; such an approximation seems reasonable because although the 
molecular centres are correlated over many layers the orientations of the short axes 
do not appear to be well correlated between layers [7]. In the first theoretical analysis 
Meyer [9] discussed the possible contributions to the anisotropic intermolecular 
potential but then restricted the potential to that for quadrupolar forces when dealing 
with the smectic E-smectic B transition. This was treated within the molecular field 
approximation and the transition was predicted to be second order; the transition 
temperature was also related to the parameters occurring in the pair potential. In a 
subsequent paper [lo] Meyer returned to the problem when he developed a Landau 
theory for the transition, which was again predicted to be second order. This prediction 
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Computer simulation of smectic E to B transition 315 

conflicts with the weak first order transition which has been observed and so Meyer 
extended the theory to allow for the distortion of the lattice at the transition to the 
smectic E; with such an extension the theory is in accord with experiment. The 
influence of weak interactions between layers on the order of the transition was also 
considered although it was concluded that this would remain first order. The Landau 
theory of the smectic E-smectic B transition including lattice distortions has been 
redeveloped by Michelson and Cabib [ I  I] using group theoretical arguments to 
describe the symmetry changes at the transition. They explore, in a natural way, the 
ground state structures given by the theory rather than use the known structures to 
construct the Landau expansion of the free energy density. They also predict the 
smectic E-smectic B transition to be second order even when the lattice distortions are 
included in the theory. In addition they criticize the work of Meyer [lo] because, they 
claim, the ordering tensor employed in his theory is not sufficiently general and the 
coupling of the lattice distortion to the ordering tensor is strictly forbidden by the 
symmetry of the smectic phases. Later, the molecular field theory was redeveloped by 
Felsteiner rt al. [12] starting from a pair potential of the same form as that for 
quadrupolar interactions. The theory was then used to explore the possible structures 
for the short axes for different choices of the parameters occurring in the pair 
potential. Only one of these structures, namely the herring-bone arrangement in the 
smectic E, has been observed. In addition the temperature for the smectic E-smectic 
B transition was also related to the parameters in the pair potential. 

Here we adopt a different approach to investigate the smectic E-smectic B transition 
by using the Monte Carlo technique of computer simulation [13]. This has the merit of 
being able to calculate a wide range of properties for a model smectogen, in an essen- 
tially exact way. The nature of the model is described in the following section where we 
show how the quadrupolar intermolecular potential employed in the simulation is 
related to the general pair potential for rigid molecules of arbitrary shape. The Monte 
Carlo calculations are explained briefly in $3 where the various properties determined 
by the simulation are also described. These include thermodynamic properties as well 
as single particle orientational order parameters and various orientational correlation 
functions needed to characterize the structure of the phases. The results of the simu- 
lation are presented and discussed in the final section where we also predict the 
scattering patterns expected for the phases by using optical masking techniques [ 141. 

The smectic E-smectic B transition has certain features in common with the 
rotational transition observed for molecular nitrogen adsorbed on graphite [ 151. They 
differ primarily in that the internuclear vector of the nitrogen molecule, which is the 
equivalent of the short molecular axis of a smectogenic molecule, is not constrained 
to be parallel to the graphite surface [I61 unlike the situation for the smectic phases. 
Attempts [17-19] have been made to understand the nature of this transition by using 
computer simulation techniques with models analogous to that which we have adopted 
[20]. However in our investigations we have concentrated on those features of the 
smectic E-smectic B transition which will be of prime interest to those concerned with 
these smectic phases. Indeed we trust that the detailed description of the transition 
exhibited by our model smectogen available from the simulation will stimulate more 
studies, both theoretical and experimental. 

2. The intermolecular potential 
The mesogens which exhibit a smectic E-smectic B transition are composed of 

non-rigid molecules but in developing a model to study with the aid of computer 
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316 G. R. Luckhurst et al. 

simulations it is assumed that the particles are rigid. The pair potential for molecules 
of arbitrary shape may be expanded, quite generally, as 

( 1 )  
where rii is the intermolecular separation and R denotes, collectively, the orientations 
of the molecular axis systems (R;, Rj) and the intermolecular vector (04) in a 
laboratory frame [21]. The S-functions are defined by 

v, = 1 urT'J(r0) S,$J(f2)? 

where (k::;) is a Wigner 3j symbol, Di.k(fi,) is a Wigner rotation matrix and 

CJ,,,(04) is a modified spherical harmonic. X-ray diffraction studies suggest that the 
orientational order of the molecular long axis is high [7] and so we take the molecular 
z axis to be parallel to that of the laboratory frame, which is normal to the smectic 
layer. In addition such studies also show the orientational correlations between 
molecules in different layers to be weak; we shall therefore restrict our attention to a 
single molecular layer for which the intermolecular vector is orthogonal to the 
laboratory z axis. With these realistic assumptions the S-functions are reduced to 

where y is the angle made by the molecular x axis with that of the laboratory frame. 
The molecular polarity does not seem to affect the smectic E-smectic B transition and 
so we take the molecules to possess a mirror plane orthogonal to the molecular z axis; 
this restricts L, L', k and k' to even values. Even with these assumptions the number 
of unknowns in the pair potential is impossibly large and so we shall restrict L and 
L' to a value of 2, since these give the first non-trivial terms in the expansion of the 
pair potential. The angular dependence of the pair potential then takes the form 

UI, = acos2(r, - Y,) + b{C0S2(Yl - 4,,) + c o a r ,  - 4,)l 
+ CCOS2(YI + r, - 24,,)9 (4) 

where the coefficients a, b and c are related to the expansion coefficients ~ : : , ( r , ) .  
The molecules in a smectic B phase and, to a good approximation, in a smectic 
E phase are arranged on a triangular network and in consequence the term 
b{cos2(yl - 4,,) + cos2(y, - 4,,)} does not contribute to the total potential energy 
of the system. The effective pair potential is therefore reduced further to 

To evaluate the relative magnitude of the two remaining coefficients we assume that 
the dominant contributions to the pair potential responsible for the smectic E-smectic 
B transition result from quadrupolar interactions. Such an assumption is in accord 
with the herring-bone structure of the smectic E phase, as has been discussed else- 
where [9-121. The expansion coefficients for a multipolar expansion of the pair 
potential are given by 

U,, = acos2(yl - 7,) + ccos2(y, + 7, - 24,). ( 5 )  

U",", ~ ( r , , )  == (4nEo) ' I(-)"'" {(2L 2L' I)!/(2L)!(2L')!)''*rJLL - '  QLk QL k 9 

(6 )  
where J is constrained to equal L + L' [21]. The multipolar tensors QLk are given in 
a molecular frame and E~ is the permittivity of free space. Substitution of this 
expression for the J(r , , )  into equation (1) and combination with equation (5) gives 
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Computer simulation of smectic E to B transition 317 

the effective pair potential as 

u,, = (&/47%r;){COS2(yl - Y,) + (35/3)C0S2(Y1 + 7, - 24,)) (7) 

because our previous assumption of a mirror plane of symmetry orthogonal to the 
molecular z axis ensures the equality of the components Qzz and Q2-2 of the quad- 
rupolar tensor. Finally we shall restrict the interactions to nearest neighbours in order 
to simplify the simulations and for these particles we write the effective pair potential 
as 

U, = E{COS2(Yi - Y j )  + (35/3)COS2(Yi Y j  - 24y)}* (8) 

The form of this pair potential is sketched in figure 2 both as a contour plot and in 
three dimensions for two molecules with their intermolecular vector parallel to the 
laboratory x axis. The potential energy surface contains four minima each correspond- 
ing to one molecule parallel to the intermolecular vector while the other molecule is 
orthogonal to it .  This demonstrates the clear dominance of the second term in the pair 
potential, for the first term is a maximum when the particles are parallel irrespective 
of their orientation to the intermolecular vector. For a collection of molecules with 

b 

180 w 0 

Figure 2 .  The effective pair potential (cf. equation (8)) employed in the simulations shown as 
a function of the molecular orientations in the laboratory frame with the intermolecular 
vector parallel to the ?I axis. The potential is given (a) in three dimensional and (b)  in 
contour form. 
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318 G. R. Luckhurst et al. 

their centres of mass restricted to the sites of a triangular lattice it is impossible to 
arrange all the molecular pairs so that they occupy these minima in the quadrupolar 
potential energy. We have therefore located the ground state of a system of 16 
particles interacting via the nearest neighbour pair potential in equation (8) using a 
computational minimization procedure (NAG routine E02CCF) to minimize the 
total potential energy with respect to the orientational coordinates; the ground state 
energy O/NE is found to be - 24.33 where N is the number of particles. The ground 
state configuration is shown in figure I ;  it is a perfect herring-bone structure as 
anticipated for quadrupolar interactions. The local structure of the six neighbours 
around a given molecule has two molecules parallel to the central particle and at 45" 
to the intermolecular vector while the remaining four are orthogonal to that at the 
centre and make angles of 15" and 135" with the intermolecular vector. 

3. The Monte Carlo simulations 
The system studied consisted of an array of 576 particles arranged on a triangular 

lattice. The simulation was performed using the standard procedures introduced by 
Metropolis et al. [22] with periodic boundary conditions. The orientation of the 
molecular x axis with respect to the laboratory frame was stored as y and this was 
changed randomly according to 

Ynew = Yold + A{c - (1/2)}? (9) 

where [ is a random number generated with a uniform distribution in the range 0 to 
1 and A is the maximum displacement whose value is used to control the acceptance- 
rejection ratio. The particle whose orientation is to be changed was also selected at 
random. For each temperature, defined in terms of the scaled quantity T*( = kT/&), 
the total run consisted of an equilibration stage of about 1000 cycles where a cycle is 
N attempted moves. This was followed by a production run of between 4000 and 
1 1  000 cycles, with the longer runs being used in the vicinity of the phase transition. 
The first temperature studied was T* equal to 1.0 and for this the initial configuration 
was taken to be a perfect herring-bone with one of its glide planes parallel to the 
laboratory x axis (cf. figure 1). In principle any starting configuration could have been 
used; however the ground state structure is triply degenerate corresponding to the 
alignment of a glide plane along one of the three intermolecular vectors (i.e. corre- 
sponding to $11 = 0, n/3 or 2n/3). In consequence if the starting configuration had 
been totally disordered then on equilibration at a low temperature the herring-bone 
structure could have been formed in different parts of the system with a glide plane 
along different intermolecular vectors. An example of such a situation can be seen in 
figure 3 where two domains are present, one with the glide plane parallel to the x axis 
(4,, = 0) and the other with 4,, equal to 2n/3. It has been predicted that such structures 
would require extensive equilibration runs before the system is annealed into a 
monodomain [23]. We decided therefore to start our series of calculations from a 
perfect herring-bone structure and to use the final configuration of the production run 
obtained from a lower temperature as the starting configuration for a simulation at 
a new temperature. 

A variety of thermodynamic and structural properties were evaluated as a 
function of the scaled temperature. These included the scaled internal energy per 
particle O*(= DINE) and the scaled heat capacity at constant volume per particle 
C,*( = i?O*/aT*),). This was obtained by numerical differentiation of the internal 
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Computer simulation of smectic E to B transition 319 

energy with respect to temperature using a cubic spline interpolation (CERN 
library routine E209). The heat capacity may also be obtained from the fluctuations 
in the internal energy [13] 

c,* = ((3) - T*’) /T**,  (10) 
but C,* is small for this system and the production runs employed in our simulations 
were not long enough to yield the heat capacity with sufficient accuracy. 

The prime feature of the system is the destruction of the long range orientational 
order on passing from the smectic E to the smectic B mesophase and so we require 
a single particle order parameter with which to characterize this change. Such an order 
parameter must be defined as an average of some function of the angle made by the 
molecule with its preferred direction or director. In principle therefore we should need 
to locate the director during the course of the simulation experiment. Similar prob- 
lems have been encountered in computer simulation studies of the nematic-isotropic 
transition and a variety of solutions have been proposed [13]. However, a glance at 
the herring-bone structure in figure 1 reveals that there is not a single director for the 
smectic E phase but two. This situation obtains because the structure is composed of 
molecules arranged on two sub-lattices each with their own director which are 
orthogonal to each other. In general the location of both directors would be a difficult 
task during the simulation and so we seek to define a long range orientational order 
parameter which is the same for both sub-lattices. For a two dimensional system the 
natural single particle orientational order parameters are the ensemble averages of the 
Chebychev polynomials, Fa( - c o s y ’ )  where y’ is the angle made by the molecular 
axis with the director. Such averages are the same for molecules on the two sub- 
lattices. However we only know the angle y between the molecule and an arbitrary 
laboratory axis. We seek therefore to choose a value for the integer n such that the 
averages =yA and =yB for the sub-lattices A and B are identical. These averages 
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may be written in terms of the angles of aA and aB made by the two directors with 
respect to the laboratory axis; thus for the sub-lattice A 

cosnyA = cosn(y’ - a,,,) 

= cos ny‘ cos naA , ( 1  1). 

because the order parameters sin ny’ vanish. There is a similar expression for cos nyB 
which differs from that for sub-lattice A in the term cosn aB and so we need to select 
n such that 

cosnuA = cosnaB. (12) 

cosnaA = cos(naA - n42); (13) 

The directors for the sub-lattices are orthogonal and so we require 

the lowest value of n satisfying this condition is 4. The averages cos4y are therefore 
the same for the two sub-lattices. We now need to determine the director orientations 
uA and hence a,; this could be achieved by evaluating sin4y and cos4y since [24] 

- 

-- 
tan4aA = tan4aB = sin4y/cos4y. 

Subsequently however we discovered that the glide plane for the herring-bone structure 
remained pinned along the laboratory x axis during all the simulations except perhaps 
close to the transition to the smectic B phase. This pinning is reminiscent of that 
observed for the director of the nematic phase formed by particles placed on a simple 
cubic lattice and interacting via anisotropic dispersion forces where again the pair 
potential depends on the orientation of the intermolecular vector [25]. Given the 
pinning of a glide plane in the smectic E phase we calculated three fourth rank order 
parameters namely cos4(y - 4)  where 4, the orientation of the intermolecular vector, 
takes values 0, 4 3  and 2n/3; we denote them by c, Tii3 and TFi3. For the perfect 
herring-bone structure shown in figure 1 the order parameters take the values - I ,  
1/2 and 1/2 respectively and the same relationships exist between the three order 
parameters when the orientational order is incomplete. The order parameters were 
calculated by averaging over all the particles in the system at the end of every cycle 
in the production run. Since the two order parameters Ti” and TFi3 were indeed 
found to be equivalent in the simulations their average, which we denote by Ttqni3:2n’3, 
was determined. 

As the transition to the smectic B phase is approached there is the possibility that 
the glide plane is no longer pinned along the lattice vector parallel to the x axis. In 
an attempt to check for such a change a fourth order parameter defined as the 
maximum value of the moduli of c, TtI3 and T;’l3 was calculated; this is denoted by 

To characterize the structural features of the phase in more detail, in particular the 
herring-bone structure of the smectic E phase, we have calculated several pair corre- 
lation functions; these monitor the distance dependence of the angular correlations 
[13,26]. We have evaluated the total pair correlation functions of rank two and four; 
they are the analogues of the correlation functions encountered for three dimensional 
systems and are defined by 

Tx. 

and 
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Here r; is the scaled separation r,,/a, where a is the lattice spacing, between particles 
i and j ;  y,, is the relative orientation (y, - y,) of the two particles. In the large 
separation limit when the angular correlations are lost F!(r?) provides an alternative 
route to the fourth rank single particle order parameter T:, which we write as F4, for 

T: . 

The situation is not quite so straightforward for F2(r;) because this does not vary 
smoothly with r: but adopts negative as well as positive values; this is apparent from 
a calculation of F2(r;)  for the perfect herring-bone structure shown in figure 1. How- 
ever the limiting value of the positive F2(r;) does yield the second rank single particle 
order parameter T2 which is defined as 

T2 = cos2y', (18) 

where y' is the angle made by the molecular axis with the director. This situation 
obtains because for values of r; for which the second rank pair correlation function 
is positive the molecules are aligned with respect to the same director. The two 
correlation functions were determined at the end of every cycle for all pairs of particles 
with a scaled separation of 10 or less; this cut-off was imposed because of the excess 
correlations imposed by the periodic boundary conditions for larger separations [ 131. 
At least 4000 configurations were used to calculate the correlation functions and these 
were taken from the end of the production run. 

It is also of interest to monitor the orientational correlations along particular 
lattice vectors and so we have calculated the second rank anisotropic correlation 
functions 

u r ; ,  4,) = cos2yV(r;1 41/). (19) 

where 4,, is the angle made by the lattice vector, containing particles i andj ,  with the 
laboratory x axis. We have, therefore, determined three anisotropic correlation 
functions with $V equal to 0, 4 3  and 2n/3 which we denote by f l ( r ; ) ,  F:13(r,3 and 
F'"3(r:), respectively. However, because a glide plane of the herring-bone structure 
is pinned along the x axis the correlation functions with 4,, equal to 71/3 and 2n/3 
should be equivalent. This proved to be the case and so F:'3(r,3 and F;"13(r;) were 
averaged. The correlation functions were calculated for the last configuration of each 
cycle and averaged over the entire production run. 

4. Results and discussion 
Here we describe the results obtained from our Monte Carlo simulation of the 

model mesogen and discuss them making contact, where possible, with experimental 
studies of the smectic E-smectic B transition. The numerical values of all the results, 
together with other details of the simulation described in this paper, have been 
deposited as a Supplementary Publication, comprising nine pages, with the British 
Library Document Supply Centre. Copies of these tables may be obtained by using 
the procedure described at  the end of this issue and by quoting SUP 16503. 

The scaled internal energy per particle is shown as a function of the scaled 
temperature over the wide range, 0 to 25, in figure 4. The internal energy is seen to 
increase continuously with temperature over the entire temperature range. However 
there appears to be a change in slope when T* is in the vicinity of 10 and this change 
is revealed more clearly by the scaled heat capacity whose temperature dependence is 
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lo 
0 5 10 15 20 25 

T+ 

Figure 4. The dependence of the scaled internal energy per particle, u* (W), and the scaled 
heat capacity per particle, C,l (O), on the scaled temperature, T*. 

also shown in figure 4. C,* is seen to exhibit a slight maximum when T* is 9.3 0.4; 
the error here largely reflects the separation in temperature of the simulations in this 
region. The unambiguous interpretation of a small peak in the heat capacity is 
difficult, especially for a simulation containing a modest number of particles. How- 
ever, the maximum scaled heat capacity is only 1.7 which is small in comparison with 
the value of approximately 9 found for analogous lattice models of nematogens which 
exhibit weak, first order nematic-isotropic transitions [27]. Our results are then 
consistent with a higher order or continuous transition between the two phases and 
this is supported by the behaviour of other properties which we have calculated. The 
changes in the nature of the two phases are illustrated, in figure 5 ,  by the single 

Figure 5. Configurations taken from the end of the production run for a selection of the 
temperatures a t  which the model mesogen was studied. The change in the molecular 
organization from a smectic E to  a smectic B phase is clearly visible below and above T* 
of 9. 
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configurations taken from the production stage for a selection of temperatures. At 
scaled temperatures below 9.4 the herring-bone structure, typical of the smectic E 
phase, is clearly apparent. One glide plane is found to be pinned along the x axis for 
T* of 3, 5 and 7 but for the configuration shown for T* equal to 9 the glide plane is 
no longer uniformly aligned along a particular lattice vector although for much of the 
sample it seems to be aligned at 2n/3 to the x axis. At the higher scaled temperatures 
of 10 and 25 the long range herring-bone structure is destroyed and the phase has the 
random molecular orientations associated with a smectic B phase. In contrast to our 
model mesogen the smectic E-smectic B transition is found to be first order but with 
a small entropy of transition ( A S / R  - 0.2). However this first order character of the 
transition may well result from the distortion of the hexagonal lattice of the smectic 
B phase on forming the smectic E. 

The simulation of the model smectogen is, however, consistent with the second 
order character of the phase transition predicted by the molecular field theories [9,12]. 
None the less these theories fail to predict the smectic E-smectic B transition tempera- 
ture with any accuracy, thus the scaled transition temperature is given by theory as 
24.33 which yields the ratio of the predicted to observed transition temperatures as 
2.59. This gross failure of the molecular field theories must result, in part, from the low 
dimensionality of the system for in three dimensions the molecular field approximation 
works well for the nematic-isotropic transition of the Lebwohl-Lasher nematogen 
where the ratio of predicted to observed transition temperatures is 1-18 [28]. However 
for a comparable system in two dimensions where the constituent particles interact via 
the cos2(y, - y,) of the pair potential in equation (8) the ratio of the predicted to 
observed transition temperatures has increased significantly to 1.66 [24]. 

The simulation reported here is comparable to those used to investigate the 
structure of molecular nitrogen adsorbed on graphite. For example, Mouritsen and 
Berlinsky [I81 simulated the behaviour of large numbers (up to lo4) of particles 
located on a hexagonal lattice and interacting via the potential in equation (8) but 
without the cos2(y, - y,) term. Their Monte Carlo simulation yielded a transition 
temperature which with our scaling parameter is 9.04. Although this is, within 
experimental error, equivalent to our result we should note that a later simulation by 
Evans et al. [I91 in which the cos2(y, - y,) is retained in the quadrupolar pair 
potential gives a transition temperature equal to 9.39 0.17 which is identical to our 
result. We also note that for systems comparable in size to the one which we have 
studied Mouritsen and Berlinsky found the transition to be continuous, however 
when the number of particles was increased to lo4 the transition was observed to be 
weakly first order [18]. These authors point out that the first order transition is in 
agreement with a renormalization group calculation on a system belonging to the 
same universality class as the quadrupolar system; that is the Heisenberg model with 
face type cubic anisotropy in two dimensions. Since these aspects are discussed in 
detail elsewhere [I81 we shall not repeat them here. 

We turn now to the structural parameters determined from the simulation and we 
begin with the fourth rank single particle order parameters T t ,  Tt’1,2n’3 and Ty. 
These are shown as a function of the scaled temperature in figure 6. As expected the 
order parameters decrease in magnitude with increasing temperature but do not 
vanish exactly at the transition temperature of 9.3. In addition the order parameters 
vary continuously through the transition; such behaviour is to be anticipated from the 
continuous nature of the transition and the rounding of the transition which results 
from the relatively small number of particles employed in the simulation [29]. Except 
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T* 

Figure 6 .  The temperature dependence of the fourth rank single particle orientational order 
parameters F:, ~ ~ ’ ’ ~ 2 n ’ 3  and Fr; these are denoted by (W), (0) and (0). respectively. 

in the close vicinity of the phase transition the values of T: and Fy are identical, 
which shows that one glide plane of the herring-bone structure is accurately pinned 
along the .Y axis. 

The fourth rank order parameter F4 determined from the long range limit of the 
total fourth rank pair correlation function is shown as a function of the scaled 
temperature in figure 7. These results are found to be in good agreement with F:. The 
second rank order parameter T2 obtained from the long range limit of the positive 
values of F2(r$) are also plotted as a function of scaled temperature in figure 7. T2 is 
always greater than T4 and at low temperatures it decreases slowly with increasing T* 
until at the transition T2 drops rapidly to essentially zero in the smectic B phase, 
indeed the change in T2 appears to be discontinuous. However T2 is expected to be 
greater than T4. This situation obtains because the orientational order parameters are 
given by the convolution 

where f(y’) is the singlet distribution function for the molecular orientation with 
respect to the director. Since the distribution is expected to be peaked at y’ equal to 
zero and T,(COS 7’) contains more nodes than T,(cos y’) then the averages must satisfy 
the inequality F2 >, F,. It may be this factor, combined with the sparcity of points 
near the transition, which produces the apparent discontinuous change in T2; in any 
event the continuous nature of the transition is indicated by the temperature dependence 
of the heat capacity. 

The two order parameters can be used to explore the form of the singlet distri- 
bution function; this is related to the potential of mean torque, U(y‘), which a 
molecular experiences by 

f ( y ’ )  = Z - . ’  exp { - U(y’)/kT}, (21) 

where the orientational partition function 

provides the normalization. The potential may be expanded in a basis of Chebychev 
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a 

325 

0 . 0  0 . 2  0 . 4  0.6 0.6 i . 0  

72  

Figure 7. (a) The second (m) and fourth (0) rank single particle order parameters, F2 and T4 
respectively, shown as a function of the scaled temperature, T*. (b)  The dependence of 
T4 on T2 obtained from the simulation (0) and predicted by the molecular field theory 
(-). 

polynomials as 

where the symmetry of the phase restricts the summation to even values of n.  
According to a molecular field analysis of the quadrupolar interaction the series may 
be truncated after the second rank term [9,12]. In addition this truncated form of the 
potential is obtained via the principle of maximum entropy as that which yields the 
best singlet distribution function when only the second rank order parameter, T2,  is 
known [30]. However we have determined T4 as well as T2 from the simulation and  
so we can use this additional information to  test the proposed truncation of the 
potential of mean torque. We d o  this by using equations (20-23) t o  write the order 
parameters as 
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where I,(x) denotes an nth order modified Bessel function and hence to calculate T2 
and T4 as a function of a,/kT. The results of these calculations are shown as the solid 
line in figure 7 (6) where T4 is plotted as a function of F2; the data obtained from the 
simulations are included in the same figure. The good agreement between the predicted 
and the simulated dependence of F4 on T2 supports the orientational dependence of 
the potential of mean torque given by the molecular field theory. 

The total pair correlation function, from which F2 and F4 were determined, are 
shown in figure 8 as a function of the scaled separation for a selection of temperatures 
studied in the simulation. In the perfectly ordered herring-bone structure F4(r;) is 
independent of r; and equal to unity; this behaviour is exhibited clearly by the results 
at T* of 1. As the temperature is increased so the extent of the orientational correlations 
decreases although it is of interest to note that within the smectic E phase F4(r;) 

a ia 
T* ,,o . . . . . . . . . .  .I. +. ....... ..I. I. 

. .  i .. A . .  
" - u  1 L  

10 
30 

b 
. -  . . . . .  t 50  . .  . .  

. .  . . . . .  

-041 I 
0 2 4 6 8 10 

r,; 

Figure 8. The dependence of the total orientational pair correlation functions on the scaled 
separation, r;,  for a selection of the temperatures studied: (a) for the fourth rank 
function, F4(r;) and (b) for the second rank function, F,(r;). 
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reaches its limiting value at quite small separations r;, typically about 2, corresponding 
to the third shell of neighbours. It is also noticeable that the correlation function 
increases from its initial value with increasing separation before decreasing again to 
its long range limit. This feature is also apparent in the smectic B, for T* greater than 
9.5, but now the correlation function does not decay to its limiting value until the 
scaled separation is greater than about 5 .  We shall consider possible explanations for 
the slight maximum exhibited by F4(r;), shortly. 

The total fourth rank correlation function is informative because it shows that the 
angular correlations are relatively insensitive to the molecular separation within the 
smectic E, at least until the vicinity of the transition is reached. However F4(r;) reveals 
nothing about the herring-bone structure of the smectic E phase. This is not the case 
for the total second rank correlation function which for a perfectly ordered herring- 
bone takes values 1 and - 1/3 in a characteristic manner, for in some coordination 
shells all of the particles are parallel to that at the origin while for others only one third 
are parallel, the remaining two-thirds being orthogonal to the central particle. This 
particular variation is shown quite clearly by the results given in figure 8(b)  for a 
scaled temperature of 1. This variation in the sign of F2(r;), which serves as a 
fingerprint for the herring-bone structure, persists as the temperature is increased 
although the magnitude of the orientational correlations decreases. The positive and 
negative values of the second rank correlation function also decay rapidly with 
increasing separation to their non-zero values within the smectic E at least for 
temperatures less than 9.0, typically by a scaled separation of 3. However in the 
vicinity of the phase transition this decay length for the local orientational correlations 
begins to grow; here we use the term decay length instead of correlation length because 
in the smectic E phase orientational correlations persist in the long range limit. Just 
above the transition, in the smectic B phase at  a scaled temperature of 10, F2(r;) has 
not decayed to its limiting value of zero until r; has reached its maximum value of 
10. As the temperature is increased further the correlation length together with the 
local orientational correlations decrease further. The pretransitional growth in the 
decay length and the correlation length as the transition is approached is seen 
therefore to be symmetric about the transition. Finally we note that although the long 
range structural order of the smectic E phase is destroyed at the transition a local 
herring-bone structure is preserved, indeed this local structure has been inferred from 
the X-ray diffraction patterns observed for the smectic B [7]. 

A more informative view of the molecular organization within a monodomain of 
a smectic E phase is available from the anisotropic second rank correlation functions. 
F2(r,T, b,,). The results for the two independent correlation functions, f l ( r ; )  and 
F: ’ 2n ’ ( r ; ) ,  are shown in figure 9 for a selection of the scaled temperatures studied in 
the simulation. We see that within the smectic E phase f l ( r ; )  decays rapidly to its long 
range limit whereas the average F;’1.2n’3 (r;)  oscillates between negative and positive 
values of essentially equal magnitude. The origin of this distinctive behaviour is 
readily understood by considering these functions for a perfect herring-bone structure 
with one glide plane parallel to the laboratory x axis (cf. figure 1). Along the glide 
plane, corresponding to the lattice vector with 4,, equal to zero the particles are 
parallel to each other and so f l ( r ; )  is equal to one and independent of the scaled 
separation. However along the other two lattice vectors (4,, = 7r/3 and 27r/3) for 
which F2(r;, 4,,) were calculated the molecules are alternately orthogonal and parallel 
to that at the origin; in consequence F:’3*2z’3(r;) alternates between - 1 and 1.  The 
characteristic forms of the anisotropic correlation functions are clearly discernible at 
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Figure 9. The dependence of the anisotropic second rank orientational correlation functions 
on the scaled separation, r:, for a selection of the scaled temperatures, T*, studied in the 
simulation: (a) f l ( r a )  and (b) F;’3s2n’3(r3. 

the lowest scaled temperature of 1 (cf. figure 9) in accord with the herring-bone 
structure (cf. figure 1). As the temperature is increased within the smectic E phase so 
the extent of the orientational correlations decreases, as we can see from figures 9 (a) 
and (b) .  In addition the short range order, with its slight maximum at r: of 2, is 
apparent prior to the correlation functions attaining their long range limits beyond 
a scaled separation of about 4. At a reduced temperature of 9, just before the phase 
transition, @ ( r ; )  exhibits an alternation which becomes more marked at  T* of 10 
although now the long range limit is considerably reduced. At still higher tempera- 
tures within the smectic B these oscillations are considerably diminished and the 
correlation function decays rapidly to its long range limit of zero. The alternation in 
@ ( r ; )  obtains because in the vicinity of the transition, regions of the sample develop 
where the glide plane is no longer parallel to the laboratory x axis (cf. figure 5). As 
a result the correlation functions F2”’3(r;) and FPl3(r;) with their oscillations between 
negative and positive values are mixed with f l ( r ? )  (each obtained with the glide plane 
parallel to the laboratory x axis) and this produces the oscillations in the observed 
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e(r,T).  Above the transition the smectic B phase retains a local herring-bone structure, 
as we have seen, and it is this which is responsible for the pronounced oscillation in 
f l ( r : )  at a scaled temperature of 10. 

We now return to the problem of the short range orientational correlations and 
in particular the maximum observed in the functions F4(r:) and f l ( r : )  at a scaled 
separation of 2 within the smectic E phase. The extent of the orientational correlations 
is determined by both direct and indirect correlations, the latter being mediated by 
one or more molecules. In consequence the calculation of the short range correlations 
is a formidable task and we give here a simple interpretation of our results. Consider 
the anisotropic function e ( r : )  which reflects the orientational correlations for particles 
located on an axis parallel to the glide plane (cf. figure 1). For a single line of particles 
interacting via the quadrupolar potential in equation (8) the ground state is a set of 
particles alternately parallel and orthogonal to the intermolecular vector. The nearest 
neighbours. corresponding to r: of I ,  are therefore anticorrelated and the next nearest 
neighbours (i.e. r: = 2 )  are correlated. Although this simple observation plays a 
central role in understanding why the value of f l ( r : )  is less for r: equal to 1 than for 
2 which in turn is greater than for 3, it cannot be the complete explanation. It is clear 
that molecules in the adjacent, parallel rows, with their indirect contributions to the 
correlation functions, are essential to stabilize the herring-bone structure and so 
maintain the molecules along the glide plane more or less parallel. 

The majority of experimental investigations of the smectic E and B phases have 
been concerned with the determination of their molecular organizations using X-ray 
and neutron diffraction techniques. In this final part of our study we attempt to 
compare our results with those from such diffraction experiments. The scattering 
patterns given by our model smectogen could, in principle, be calculated from the 
orientational correlation functions available from the simulations; however we have 
adopted an alternative and simpler procedure. In this the X-ray diffraction pattern 
associated with a particular molecular arrangement is evaluated by first constructing 
an image or mask of sufficient size that it will diffract a monochromatic beam of light; 
typically the molecules are scaled to be several mm in magnitude [14].  

The optical mask is usually a negative in which the molecules are transparent and 
the diffraction pattern is recorded photographically with the light beam orthogonal 
to the mask. The diffraction pattern analogous to that from a crystal plane is obtained 
by using an optical mask formed from the projection of the molecules onto that plane. 
The use of an optical transform to determine the appearance of an X-ray diffraction 
pattern from a given molecular arrangement has the virtue of simplicity, although it 
does not necessarily possess the accuracy of a numerical Fourier transform of the 
correlation functions [7] .  

To construct the diffraction pattern expected for a single smectic layer, with the 
X-ray beam parallel to the layer normal, we have employed configurations taken from 
the Monte Carlo simulations to form the optical masks. In these the cross-section of 
the mesogenic molecule is represented by a line with a length comparable to the lattice 
spacing (cf. figures 5 and 10). We could have used a more elaborate representation but 
it is unlikely that this would have affected the optical diffraction pattern significantly. 
The configurations were taken from the end of the production runs for three scaled 
temperatures, namely 1, 8 and 17 to simulate the X-ray diffraction patterns from a 
highly ordered smectic E, a less ordered smectic E and a smectic B phase, respectively. 
These particular configurations are shown in figure 10; however the masks themselves 
were circular with a diameter of 24a. They were constructed by Dr. G. Harburn of 
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T*= 1 

* T :8 

T*= 17 

Figure 10. Typical configurations for the smectic E phase ( P  = 1 and 8) and for the smectic 
B phase (T* = 17) together with their optical transforms. 

the Department of Physics, University College, Cardiff; he also recorded their oGtical 
diffraction patterns and these are given in figure 10 adjacent to the corresponding 
configuration. 

It is instructive, before comparing our simulated patterns with those observed for 
real smectogens, to consider the form of the diffraction patterns expected for the 
configurations which we have investigated. We begin with the smectic B phase 
(T* = 17); because of its rotational disorder the only long range symmetry element 
is the six-fold rotational symmetry associated with the hexagonal lattice corresponding 
to the space group p 6  [31]. Despite this symmetry we have chosen to use the centred 
rectangular unit cell shown in figure 11  (a) because of its natural relationship to that 
for the smectic E phase, as we shall see. This has now to be used to obtain the so-called 
reciprocal lattice which is, in essence, the diffraction pattern. To do this we first label 
the planes, or in our case the lines, of particles which constitute the real lattice using 
Miller indices, h and k. These give the intercepts of the lines on the crystal axes a and 
b along the sides of the unit cell as a/h and b/k,  where a and b are the dimensions of 
the unit cell which for the rectangular cell associated with the hexagonal net has a/b 
equal to 8. Examples of such lines, together with their Miller indices, are given in 
figure 11 (a); the distances of the lines from the origin are denoted by dhk and these are 
also shown. The reciprocal lattice is formed with vectors along dhk whose distance 
from the origin, d z ,  is inversely proportional to the length of dhk. This procedure 
creates an infinite array of points (h k) in reciprocal space; some of the points 
determined in this way for the hexagonal lattice are shown in figure 11 (a). The array 
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Figure I I .  The unit cells, the reciprocal lattices and the axis systems for (a) the smectic B and 
(b) the smectic E phases. The open circles denote systematic absences in the reciprocal 
lattices resulting from the symmetry of the unit cells. The squares indicate those spots 
which appear in the diffraction pattern of the smectic E but not smectic B phase. 

can be compared with the diffraction pattern although the symmetry of the unit cell 
restricts the points in reciprocal space which contribute to the diffraction pattern. For 
example, the centred rectangular unit cell for the smectic B phase may be conveniently 
but not uniquely regarded as belonging to the two-dimensional space group cmm and 
this confines the sum (h + k) to be even [31]; it is these surviving lattice points which 
are shown in figure 1 1  (a); the open circles denote systematic absences. The central 
hexagonal arrangement of spots predicted is clearly discernable in the optical diffraction 
pattern for the smectic B phase (cf. figure 10). Other spots given in the hexagonal 
arrangement of the reciprocal lattice are also apparent in the optical transform of the 
simulated configuration but with reduced intensity. However there are twelve diffuse 
spots just outside the central hexagonal array in the optical diffraction pattern of the 
smectic B whose presence is not found in the reciprocal lattice for the triangular net; 
we shall return to these after we have considered the optical transform for the smectic 
E phase. 

The unit cell for a perfectly ordered smectic E phase is also taken to be rectangular 
(cf. figure 1 1  (b)) but now the herring-bone structure reduces the symmetry. The 
centring of the unit cell is lost but the two glide planes remain and so the space group 
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is pgg [31]. The points in reciprocal space are obtained in the same way as for the 
smectic B but the different symmetry of the smectic E requires that for points ( h  0) 
and (0 k ) ,  h and k must be even although no other constraints are placed on the Miller 
indices. These restrictions produce systematic absences along the axes a* and h* in 
reciprocal space corresponding to the glide planes parallel to the axes a and h in real 
space; the resulting diffraction pattern is shown in figure 1 1  (h) ,  where the location of 
the absence spots is indicated by open circles. We see that the scattering pattern 
should contain a hexagonal arrangement of spots with the same positions as those for 
the smectic B phase. However the pattern differs in the points (h  k )  for which neither 
h nor k is zero but their sum is odd; these additional points are shown as squares in 
figure 1 1  (h).  In consequence the reciprocal lattice for the smectic E first varies from 
that for the smectic B in the presence of four spots labelled (2 l ) ,  (2 I ) ,  (2 7) and 
(2 7) which sit at the corners of a central rectangle with its major axis along a* 
(cf. figure I 1  (b)).  These additional spots are clearly evident in the optical transforms 
obtained from smectic E configurations for both T* of 1 and 8, as we can see in 
figure 10. Additional spots with greater separations, d$, from the origin are also 
evident in the diffraction pattern of the model smectic E phase but not in that of the 
model smectic B; we shall not comment further on these because they are of insuf- 
ficient intensity to be observed in the X-ray scattering patterns of real smectogens. We 
also note that the sole difference in the diffraction patterns for the smectic E phase at 
scaled temperatures of 1 and 8 appears to be in the greater scattering intensity for the 
lower temperature; this is in accord with the higher orientational order at T* of 1 than 
8.  

We can now return to the 12 diffuse spots which surround the six sharp spots in 
the central hexagonal array observed in the optical diffraction pattern from the 
smectic B configuration (T* = 17). These result from a residual, short range herring- 
bone structure. As we have seen, the long range herring-bone structure of a smectic 
E monodomain produces four spots in a rectangular arrangement and these are at  the 
same positions as one-third of the diffuse spots found for the smectic B. The optical 
transforms of the smectic E phase shown in figure 10 contain a rectangular arrange- 
ment of four spots with the major axis along a* which is orthogonal to the lab- 
oratory x axis, defined by reference to the underlying hexagonal lattice of the model 
(cf. figure I) .  When the a axis of the unit cell is rotated by f 60" with respect to the 
x axis to bring the glide plane along the equivalent lattice vectors the diffraction 
pattern is also rotated by k 60". The hexagonal arrangement of spots in reciprocal 
space are moved to equivalent positions thus leaving the appearance of this part of 
the scattering pattern unchanged. However those spots for which ( h  + k )  is odd but 
neither h nor k is zero are moved to new positions obtained by rotating the a* axis 
through f 60" with respect to the x axis. Within the smectic B phase the local glide 
planes are not arranged along a particular lattice vector but equally along the three 
equivalent lattice vectors. In consequence the four spots observed for a monodomain 
become twelve spots for this random arrangement of the glide planes; these spots are 
diffuse because the herring-bone structure responsible for them is only of short range. 
Other diffuse spots corresponding to higher orders of reflection but with reduced 
intensity are also evident in the scattering pattern for the model smectic B phase 
(cf. figure 10); their origin may also be traced to the local herring-bone structure. It 
would appear therefore that for our model smectogen the characteristic structure of 
the smectic E phase persists, at the short range level, far into the smectic B; indeed this 
is in accord with the pair correlation functions determined by the simulation. 
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Perhaps the most striking feature of the optical diffraction patterns measured for 
the smectic E phases (T* = 1 and 8) but not the smectic B is their cross-like form 
which results from the greater intensity of certain of the spots along orthogonal 
directions. Their appearance obtains because of the elongated shape of the particles 
located on the lattice sites. The diffraction pattern is, in fact, a convolution of that 
from the crystal lattice together with that from the particles located on the lattice sites 
[32 ] .  So far we have been concerned only with the pattern from the underlying crystal 
lattice and we must now consider that from the particles forming the model smectogen. 
These are represented by a line and the scattering pattern from a uniform line of 
length L and unit scattering power is a band of intensity orthogonal to the molecular 
line and with a width in reciprocal space of approximately 2 /L  [32]. Strictly the inten- 
sity at scattering vector Q along the normal to the band is given by [2 sin (LQ/2)/Q12. 
In our representation of the model mesogen the length of the short axis of a particle 
is approximately two-thirds of the lattice spacing, which is equivalent to the side of 
the unit cell h, and so in reciprocal space the intensity should be confined to bands 
with an approximate width of 3h*. For the smectic B phase there is no long range 
orientational order, the short axes adopt all orientations and so the scattering intensity 
is uniform in the u*h* plane, as we observe for the optical transform at T* = 17. This 
is not so for the smectic E phase where the particles form two sub-lattices; the particles 
on each tend to be parallel to one another but the sub-lattices differ in that the 
preferred directions are mutually orthogonal. In  consequence the scattering intensity 
will be concentrated along two orthogonal bands with widths of approximately 3h*. 
These are marked by the dotted lines in figure 1 1 ( h )  and are clearly in good agreement 
with the observed optical diffraction patterns observed for the smectic E phase of the 
model smectogen (cf. figure 10). 

In conclusion we compare the X-ray diffraction patterns measured for real 
smectogens with these obtained for our model smectogen from the simulation. Such 
a comparison is not straightforward because the samples studied experimentally are 
not always pure monodomains; in consequence few orders of reflection are observed 
and the resolution is often poor. None the less the X-ray diffraction pattern found for 
the tilted smectic B phase (or smectic H) of terephthalylidene-bis(4-n-butylaniline) [7] 
is in good accord with that measured for the model mesogen. Thus there are six 
central spots arranged in a regular hexagon together with surrounding regions of 
diffuse scatter. Indeed these diffuse regions were interpreted as evidence for the local 
herring-bone structure of the tilted smectic B phase [7]; an interpretation which is 
confirmed by our simulations. The tilt of the smectic B structure should not influence 
the scattering pattern in the a*h* plane (here c is taken to lie along the molecular long 
axis); indeed analogous patterns have been observed for the smectic B phase of 
4-phenylbenzylidene-4’-amino-n-pentyl cinnamate (I) [4,7]. The experimental X-ray 
diffraction pattern for the smectic E phase of (I) contains the central, hexagonal 
arrangement of six spots together with four additional spots forming a central 
rectangle [4]. Comparable diffraction patterns have been observed from the smectic 
E and smectic B phases of the iso-butyl analogue of (I) [6] .  However the sample of the 
smectic E contained several domains in which the glide plane was pinned along 
different lattice vectors; in  consequence the scattering pattern contains additional 
spots obtained by simple rotations of the pattern for a monodomain. These patterns, 
although of limited extent, are in complete accord with that obtained from the 
simulation of the smectic E phase which shows many more diffraction spots. Indeed 
such simulated optical transforms may well be of value in the interpretation of LEED 
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patterns measured for molecular nitrogen adsorbed on graphite where the resolution 
is higher [33] than for the X-ray diffraction patterns of smectogens. 
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